EE106A Discussion 9: Dynamics

1 Dynamics

We've already learned kinematics, the study of motion. Now we're learning dynamics, the study of how forces affect that motion. The Newtonian dynamics you learned in high school work well in inertial reference frames. However, we deal with rotating reference frames which are not inertial, and dynamics becomes harder. Let's look at the difference.

1.1 Newton's Laws

Newton's three laws of motion form the cornerstone of dynamics. They are:

1. Every object in a state of uniform motion will remain in that state of motion unless an external force acts on it.
2. Force equals mass times acceleration.
3. For every action there is an equal and opposite reaction.

Newton's first law is called the law of inertia. If a mass is moving at a constant velocity, it will continue moving at that velocity unless a force acts upon it.

1.2 Inertial Frames

An inertial reference frame is a frame which follows Newton's first law: if a force isn't applied to a body, it will not accelerate. Thus, inertial frames do not themselves accelerate. However, inertial frames can move at constant velocity.

Problem 1:

1. Imagine that you drop a bowling ball off the Leaning Tower of Piza. Is a frame attached to the ball an inertial frame?
2. Imagine a rocket flying through deep space at $100,000 \mathrm{mph}$. Is a frame attached to the rocket an inertial frame?
3. Imagine a pebble sitting on the ground on Earth. Is a frame attached to the pebble an inertial frame?

1.3 Rotating Reference Frames

Let's look at a rotating reference frame and figure out why it's not inertial. Intuitively, one might think that a frame rotating at a constant angular velocity would count as a non-accelerating frame, but that's not actually true.

Imagine a spinning disc and take two distinct points along a radius. Observed from a non-rotating reference frame, the two points have different velocities, while in the rotating frame both have zero velocity. In addition, if observed from the nonrotating frame the points will change directions (a change in velocity) even though their speed remains the same. This is due to centripetal force which pulls the rotating point towards the axis of rotation and causes the spinning.

Problem 2: Prove that the centripetal force is defined $\boldsymbol{F}_{c}=-m r \dot{\theta}^{2} \boldsymbol{r}$

Imagine a car driving quickly (at constant speed) along a circular freeway exit ramp. The car is accelerating towards the center of the circle - a centripetal acceleration - so there must be some force that causes this acceleration. In this case, it's the frictional force of the road pushing the car inwards. However, if you sit in the car, you're in a rotating reference frame. In this frame the car is not accelerating, but there's still a force pointing inwards from the tires. Since the net force on the car in this frame must be zero, we need to create a "fictitious force" pushing outwards. This is called the centrifugal force, and it's the "force" that pushes you to the side of your car when you take turns fast.

There's another fictitious force we need to worry about called the Coriolis force. Imagine that you're looking at Earth from space, and see an anchored zeppelin on the equator facing North. When you're standing on Earth, the zeppelin appears stationary, but from space, it looks like it's moving East at 1000 mph (since Earth rotates Eastward). Now imagine that the zeppelin releases its anchor and starts moving North. Since the Earth is a sphere, the effective radius decreases the farther North you go, and so the speed of the ground decreases proportionally. However, the zeppelin is still moving East at 1000 mph , while the ground speed decreases continuously as the zeppelin moves North. Thus, from the ground the zeppelin will seem to accelerate Eastward as it moves North.
The Coriolis force is generally quite small compared to other forces (an object dropped 50 m at the equator will be deflected 7.7 mm by the Coriolis force), so often we can ignore it.

1.4 Newton-Euler Dynamics in non-inertial frames

You can see these fictitious forces crop up in the body frame Newton-Euler dynamics equations:

$$
\left[\begin{array}{cc}
m I & 0 \\
0 & \mathcal{I}
\end{array}\right]\left[\begin{array}{c}
\dot{v}^{b} \\
\dot{\omega}^{b}
\end{array}\right]+\left[\begin{array}{c}
\omega^{b} \times m v^{b} \\
\omega^{b} \times \mathcal{I} \omega^{b}
\end{array}\right]=F^{b}
$$

The top term in the right matrix is the Coriolis term. Centrifugal terms will only appear if you define a new frame with constant displacement from the body frame. This is one of the reasons that Newton-Euler equations become difficult to deal with in multibody dynamics problems.

2 Lagranginan Dynamics

In Lagrangian dynamics we'll be using conservation of energy to derive the equations of motions of our robot. Since energy is a scalar term, it's invariant to our system parameterization - we can use whichever coordinates we want. Thus, the first step in any Lagrangian dynamics problem is to choose a set of generalized coordinates q. In order to minimize system constraints, we want to choose the minimum number of coordinates to represent our system. For open-chain robot manipulators, we'll generally choose our joint angles, so $q=\theta$ and $\dot{q}=\theta$.

2.1 System Energy

Once we have our generalized coordinates q, we must define the kinetic and potential energies of our system in terms of those coordinates and their derivatives.
The kinetic energy $T(q, \dot{q})$ is the sum of the kinetic energies of each rigid body T_{i}. It will depend on the derivatives of our generalized coordinates \dot{q}, and potentially on the coordinates q themselves. Kinetic energy is composed of both rotational and translational terms, so

$$
T_{i}=\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} m v^{2}
$$

This is the same as using the generalized inertia matrix of the rigid body expressed in the body frame, as well as the body velocity.

$$
T_{i}=\frac{1}{2} V_{i}^{b^{T}} \mathcal{M}_{i} V_{i}^{b}
$$

where the generalized inertia matrix in the body frame

$$
\mathcal{M}_{i}=\left[\begin{array}{cc}
m_{i} I_{3} & 0 \\
0 & \mathcal{I}_{i}
\end{array}\right]
$$

All we're doing here is combining the mass (by which we multiply a 3×3 identity matrix I_{3}) and the moment of inertia of the system into a single matrix. Note that however you define your kinetic energy, you'll need to represent it as a function of q and \dot{q}. You'll see how to do this below.

The potential energy $V(q)$ is also the sum of of the potential energies of each rigid body V_{i}. It will only depend on our state, not its derivatives. There are two sources of potential energy we normally deal with: gravity and springs. The potential energy due to gravity is

$$
V_{g}=m g h
$$

where h is the height of the center of mass of the rigid body. The potential energy due to springs is

$$
V_{s}=\frac{1}{2} k x^{2}
$$

where x is the displacement of the spring from its neutral position. Once again, note that you'll need to represent height h and displacement x as functions of q.

2.2 The Lagrangian and Equations of Motion

We can now define the Lagrangian

$$
L=T-V=\sum T_{i}-\sum V_{i}
$$

which is the difference in kinetic and potential energy of the system. Once we can do this, we can generate the equations of motion of the system through

$$
\Upsilon=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

Here Υ is the vector of generalized forces, the force or torque terms that correspond to each generalized coordinate.

2.3 Lagrangian Dynamics of an Open Chained Manipulator

For an open chained manipulator we choose the joint angles θ as our generalized coordinates. We then start by defining our kinetic energy T. We model the robot as a set of rigid bodies, or links, connected together by joints. We know that the kinetic energy of a rigid body is

$$
T_{i}=\frac{1}{2} V_{i}^{b^{T}} \mathcal{M}_{i} V_{i}^{b}
$$

However, we need to represent these in terms of θ and $\dot{\theta}$. To do so we use the body Jacobian.

$$
V^{b}=J^{b}(\theta) \dot{\theta}
$$

Our equation for kinetic energy then becomes

$$
T_{i}(\theta, \dot{\theta})=\frac{1}{2} \dot{\theta}^{T} J_{i}^{b^{T}}(\theta) \mathcal{M}_{i} J_{i}^{b}(\theta) \dot{\theta}
$$

We know that

$$
T(\theta, \dot{\theta})=\sum T_{i}(\theta, \dot{\theta})=\sum \frac{1}{2} \dot{\theta}^{T} J_{i}^{b^{T}}(\theta) \mathcal{M}_{i} J_{i}^{b}(\theta) \dot{\theta}
$$

We then consolidate this to get

$$
T(\theta, \dot{\theta})=\frac{1}{2}(\theta)^{T} M(\theta) \dot{\theta}
$$

where the manipulator inertia matrix $M(\theta)$ is defined

$$
\sum J_{i}^{b^{T}}(\theta) \mathcal{M}_{i} J_{i}^{b}(\theta)
$$

What we're doing here is we're expressing the mass and inertias of each rigid body as moments of inertia about each joint axis (or masses along it if we have prismatic joints).
The potential energy is expressed a bit more simply as

$$
V(\theta)=\sum V_{i}(\theta)=\sum m_{i} g h_{i}(\theta)
$$

where $h_{i}(\theta)$ is the height of the center of mass of the i th link as a function of θ.
The Lagrangian is thus

$$
L(\theta, \dot{\theta})=\frac{1}{2}(\theta)^{T} M(\theta) \dot{\theta}-V(\theta)
$$

2.4 Equations of Motion of an Open Chain Manipulator

We know that the equations of motion are

$$
\Upsilon=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

When we take those derivatives we get four terms:

$$
\Upsilon=M(\theta) \ddot{\theta}+\dot{M}(\theta) \dot{\theta}-\frac{1}{2} \dot{\theta}^{T} \frac{\partial M(\theta)}{\partial \theta} \dot{\theta}+\frac{\partial V(\theta)}{\partial \theta}
$$

The first two are a result of the product rule on the time derivative of $\frac{\partial L}{\partial \dot{\theta}}=M(\theta) \dot{\theta}$. The second two come from $\frac{\partial L}{\partial \theta}=\frac{\partial T(\theta, \dot{\theta})}{\partial \theta}-\frac{\partial V(\theta)}{\partial \theta}$.

Without focusing too hard on the actual computation of the terms (generally you'll have a computer do it for you) we can combine the middle two terms $\dot{M}(\theta) \dot{\theta}-\frac{1}{2} \dot{\theta}^{T} \frac{\partial M(\theta)}{\partial \theta} \dot{\theta}=C(\theta, \dot{\theta}) \dot{\theta}$ and name the fourth term $\frac{\partial V(\theta)}{\partial \theta}=G(\theta)$. We now have the dynamics in their final form:

$$
\Upsilon=\tau=M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+G(\theta)
$$

In this case, our generalized force vector Υ is the vector of joint torques τ. The first term on the right hand side is the manipulator inertia matrix (which we've already seen) times the angular acceleration of the joints. The second term we call the Coriolis matrix, which is multiplied by the angular velocity of the joints. This term collects all the fictitious forces that arise from spinning reference frames and collects them into one term. And the third term we call the gravity vector.

3 General Equations of Motion and Examples

In fact, the Lagrangian dynamics of any system can be represented in this form:

$$
\Upsilon=M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)
$$

The inertia matrix represents the inertia (mass and moment of inertia) of the system in the coordinate system of our generalized coordinates. The Coriolis matrix contains all the fictitious forces arising from rotating reference frames. And the gravity vector is the effect of the potential energy forces (gravity and springs) on each of our generalized coordinates.

3.1 The Inertia Matrix: Spinning Teacups

We have a spinning teacup ride with two teacups (disks) mounted to the spinning ride (another disk). The teacups each spin about their own axes. The ride itself has a mass and moment of inertia. Each teacup is mounted a distance L from the center of the ride, and each has its own mass and moment of inertia.

Figure 1: Idealized Teacup Ride

Problem 3: What are the equations of motion of this system? What are the inertia matrix, coriolis matrix and gravity vector? What are the generalized forces?

3.2 The Coriolis Matrix: A sliding mass on a carousel

We have a spinning carousel (disk) with inertia I. On this carousel is a massless, frictionless linear rail that lies on a radius of the carousel. On this rail is a point mass with mass m.

Figure 2: Carousel with beam and point mass
Problem 4: What are the equations of motion of this system? What are the inertia matrix, coriolis matrix and gravity vector? What are the generalized forces?

3.3 The Gravity Vector: A mass spring

We have an object with mass m hanging from a spring with stiffness k. The object is on a frictionless rail and is constrained to only move in the vertical direction.
Problem 5: What are the equations of motion of this system? What are the inertia matrix, coriolis matrix and gravity vector? What are the generalized forces?

3.4 Dynamics of a Cart, Pole, Spring System

Figure 4 shows a model of a cart balancing a rod of uniform mass m, length $2 L$, and moment of inertia I at the center of mass about an axis pointing out of the plane of the paper. The cart has a mass M, is tethered by a spring of spring constant k, and has a motor that can exert an external force F on the center of mass of the cart. Let x denote the deviation of the cart from the uncompressed location of the spring. Mounted on the cart is a pendulum of length l of negligible mass with a ball of mass m at its end. The pendulum swivels about the center of mass of the cart with an angular deflection θ from the vertical. The cart contains a second motor that can exert an external torque τ on the pendulum.

Figure 3: Mass Spring

Derive the Lagrangian equations of motion. In particular state the the generalized Inertia matrix, the Coriolis matrix, and the gravity vector for this system.

Figure 4: Cart Spring Pendulum system

