
EE106A Discussion 7: Velocities and Adjoints

1 Representing Velocities

How do we express the velocity of something, for example, a point q? The velocity is the rate of change
of its position with with respect to a reference frame. Thus, if we have a frame called U , the velocity
of the point q with respect to U is q̇u(t), where qu(t) is the point’s position with respect to U as a
function of time. Now we have a time-dependent velocity vector q̇u(t) in frame U .

However, this velocity vector can be viewed from any other frame V , and can therefore be expressed
from V . Recall that we can change the frame of reference if we have transformation guv. When
representing velocities, it’s important to keep in mind that there are two (often different) frames that
are relevant.

2 Rigid Body Velocities

Let’s say we have a fixed frame A and a moving frame B. By construction, let’s also have point q
that’s attached to frame B. We call A the spatial coordinate frame, and B the body coordinate frame.

2.1 Spatial Velocity

Since frame B is moving, the transformation between A and B is time-dependent:

gab(t) =

[
Rab(t) pab(t)

0 1

]
(1)

Because q is fixed to frame B, its coordinates with respect to B, qb, are constant. Its coordinates in
frame A, however, are time-dependent:

qa(t) = gab(t)qb (2)

Now, the velocity of this point with respect to A, and also viewed from A, is found via differentiation:

q̇a(t) = ġab(t)qb (3)

Following the textbook, we define this quantity to be vqa(t) := q̇a(t). We can further express qb in
terms of qa(t) by the appropriate transformation:

vqa(t) := q̇a(t) = ġab(t)qb = ġab(t)g
−1
ab (t)︸ ︷︷ ︸

:=V̂ s
ab

qa = V̂ s
abqa (4)

It turns out that ġab(t)g
−1
ab (t) is a skew symmetric matrix, and we define it to be the spatial velocity

V̂ s
ab. Notice that this spatial velocity is a twist.

Going forward with the algebra and dropping notation for time-dependence, we have
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V̂ s
ab := ġabg

−1
ab =

[
ṘabR

T
ab −ṘabR

T
abpab + ṗab

0 0

]
(5)

and applying the ”vee” operator, we get the twist coordinates

V s
ab =

[
vsab
ωs
ab

]
=

[
−ṘabR

T
abpab + ṗab

(ṘabR
T
ab)
∨

]
(6)

2.2 Body Velocity

We found the the velocity vqa , and now let’s find vqb . This vqb is NOT the velocity of point q relative
to B and viewed from B — that would always be zero. Rather, it is the velocity of q relative to A and
viewed from B, which is related to vqa by a transformation:

vqb(t) = g−1ab (t)vqa(t) (7)

Again, the notation in the textbook is a bit misleading, with vqa(t) := q̇a(t), but vqb(t) 6= q̇b = 0.

We can also find a body velocity V̂ b
ab (which is also a twist) such that

vqb(t) = g−1ab (t)vqa(t) = g−1ab (t)ġab︸ ︷︷ ︸
:=V̂ b

ab

qb = V̂ b
abqb (8)

Again, dropping the time dependency,

V̂ b
ab := g−1ab (t)ġab =

[
RT

abṘab RT
abṗab

0 0

]
(9)

and the twist coordinates are

V b
ab =

[
vbab
ωb
ab

]
=

[
RT

abṗab
(RT

abṘab)
∨

]
(10)
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3 Example: One DOF Manipulator

Problem 1. Find the body and spatial velocities for the fixed frame A and moving frame B.

Figure 1: Rigid body motion by rotation about one joint

We can find the spatial and body velocities by first finding the transformation between the two frames
gab(t). If we go forth with the forward kinematics, we get

gab(t) =


cosθ(t) −sinθ(t) 0 −l2sinθ(t)
sinθ(t) cosθ(t) 0 l1 + l2cosθ(t)

0 0 1 l0
0 0 0 1


From this transformation, we calculate the derivative and the inverse:

ġab =


−sinθ −cosθ 0 −l2cosθ
cosθ −sinθ 0 −l2sinθ

0 0 0 0
0 0 0 0

 θ̇

g−1ab =


cosθ sinθ 0 −l1sinθ
−sinθ cosθ 0 −l2 − l1cosθ

0 0 1 −l0
0 0 0 1



V̂ s
ab = ġabg

−1
ab =


0 −1 0 l1
1 0 0 0
0 0 0 0
0 0 0 0

 θ̇ =⇒ V s
ab =


l1θ̇
0
0
0
0

θ̇



V̂ b
ab = ġabg

−1
ab =


0 −1 0 −l2
1 0 0 0
0 0 0 0
0 0 0 0

 θ̇ =⇒ V b
ab =


−l2θ̇

0
0
0
0

θ̇
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There’s actually a shorter method we can use to find the velocities. It’s based on the interpretation of
the twist coordinates as summarized in the following table:

Quantity Interpretation
ωs
ab Angular velocity of B wrt frame A, viewed from A.
vsab Velocity of a (possible imaginary) point attached to B traveling

through the origin of A wrt A, viewed from A.
ωb
ab Angular velocity of B wrt frame A, viewed from B.
vbab Velocity of origin of B wrt frame A, viewed from B.

When the velocities are induced by revolute joints, we can imagine circular paths traced out by these
joints that help us figure out these values. Let’s see how this works with some examples:

Problem 2. Find the spatial and body velocity twists for the fixed frame A and moving frame B in
Fig. 1 (copied here) using the interpretation of twist coordinates.

V s
ab =

[
vsab
ωs
ab

]
;V b

ab =

[
vbab
ωb
ab

]
ωs
ab: With respect to A and expressed in A-coordinates, the angular velocity of B is

[
0 0 θ̇

]T
.

ωb
ab: With respect to A and expressed in B-coordinates, the angular velocity of B is also

[
0 0 θ̇

]T
.

vsab: A point attached to B that travels through the origin of A has a circular trajectory around the
joint axis that passes through the origin of A. Instantaneously at the origin of A, with respect to A

and in A-coordinates, the velocity of such a point is
[
l1θ̇ 0 0

]T
.

vbab: The velocity of the origin of B with respect to A, would be tangential to the circle that the origin
of B traces as a function of θ. Thus, as expressed in B-coordinates, this velocity is along the negative

x-axis, with coordinates
[
−l2θ̇ 0 0

]T
.
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Problem 3. Find the spatial and body velocity twists between A to B and also between B to C in Fig.
2 using the interpretation of twist coordinates.

Figure 2: Rigid body motion by rotation about two joints.

V s
ab =

[
vsab
ωs
ab

]
;V b

ab =

[
vbab
ωb
ab

]
;V s

bc =

[
vsbc
ωs
bc

]
;V b

bc =

[
vbbc
ωb
bc

]
ωs
ab: With respect to A and expressed in A-coordinates, the angular velocity of B is

[
0 0 θ̇1

]T
.

ωb
ab: With respect to A and expressed in B-coordinates, the angular velocity of B is also

[
0 0 θ̇1

]T
.

vsab: A point attached to B that travels through the origin of A will rotate about the axis of joint 1.
However, since the origin of A is also on this axis, this point will not move with respect to A. Thus,

its velocity is
[
0 0 0

]T
.

vbab: The velocity of the origin of B with respect to A would also be zero,
[
0 0 0

]T
.

ωs
bc: With respect to B and expressed in B-coordinates, the angular velocity of C is

[
0 0 θ̇2

]T
.

ωb
bc: With respect to B and expressed in C-coordinates, the angular velocity of C is also

[
0 0 θ̇1

]T
.

vsbc: A point attached to C that travels through the origin of B will rotate about the axis of joint 2.

With respect to frame B, its instantaneous velocity at its origin is
[
l1θ̇ 0 0

]T
.

vbbc: The velocity of the origin of C with respect to B is zero,
[
0 0 0

]T
.
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4 Adjoint Transformations

The spatial and body velocity of a rigid motion are related by a similarity transform:

V̂ s
ab = gabV̂

b
abg
−1
ab (11)

and

V s
ab =

[
vsab
ωs
ab

]
=

[
Rab p̂abRab

0 Rab

]
︸ ︷︷ ︸

:=Adgab

[
vbab
ωb
ab

]
= Adgab

V b
ab (12)

where the adjoint transformation Adgab
maps body velocity twist coordinates to spatial velocity twist

coordinates.
Adg is invertible, and its inverse is

Ad−1gab
=

[
RT

ab −RT
abp̂

0 RT
ab

]
(13)

4.1 Coordinate Transformations

We don’t compose velocities in the same way as with rigid body transformations—we need to use the
adjoints. For spatial velocity composition, we have:

V s
ac = V s

ab +Adgab
V s
bc (14)

And with body velocity composition,

V b
ac = Adg−1

bc
V b
ab + V b

bc (15)

Extra practice: Using your solutions to Problem 3 and the appropriate adjoint transformation, find
V s
ac in Fig. 2. Your answer should match the solution to Example 2.6 on page 60 in MLS.
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