
EECS/BioE/MechE C106A Discussion 6: Vision

1 Convolutions

A convolution is the treatment of one matrix M (the original image) by another usually smaller
one K (the kernel). The result of a convolution is a filtered image matrix K ∗ M . The convolution
is performed by sliding the kernel over the original image and taking the matrix dot product of the
kernel and the part of original matrix that it covers. Let’s look at an example:

Figure 1: Example of a convolution.

Problem 1. If the original matrix has dimensions m× n and the kernel has dimensions p× q, what
will be the size of the matrix resulting from the convolution?
The size of the resulting matrix is exactly how many times the kernel can cover a unique portion of
the original image. Thus, the resulting matrix will have size (m− p + 1) × (n− q + 1).
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Problem 2. Convolution kernels are useful for applying effects to images and extracting features for
machine learning. Match the resulting image to the kernel applied as well as the name of its effect.

Result

Kernel 1
9

1 1 1
1 1 1
1 1 1

 0 0 0
0 1 0
0 0 0

  0 −1 0
−1 5 −1
0 −1 0



Name of effect Box Blur Identity Sharpen

Kernels: { 0 −1 0
−1 5 −1
0 −1 0

 ,

0 0 0
0 1 0
0 0 0

 ,
1

9

1 1 1
1 1 1
1 1 1

}

Names of effects:
{

Identity, Box Blur, Sharpen
}

Problem 3. What is the form of a Gaussian blur kernel?
It is a kernel with Gaussian values in 2D. For instance, the following is an example of a normalized
Gaussian kernel with the maximum value at the center of the matrix:

1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1



1.1 Sobel Kernels

The Sobel kernels are kernels (let’s call them Kx and Ky) that approximate the horizontal and vertical
derivatives of an image respectively upon convolution. That is, given an image M , the horizontal
derivatives are found by Gx = Kx ∗M , and the vertical by Gy = Ky ∗M .

Problem 4. Which of these following kernels is Kx? Which one is Ky?−1 0 +1
−2 0 +2
−1 0 +1

 ,

−1 −2 −1
0 0 0

+1 +2 +1



We can combine the horizontal and vertical derivatives into G to approximate the overall gradient of
the image:

G =
√
G2

x + G2
y
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Problem 5. How is G useful in edge detection?
Edges are points on an image at which the gradients are high (ie. large changes in neighboring pixels).
Thus, we can use G to read off the gradients at each pixel location, and the ones with higher gradients
are points that are more likely to be on edges.

2 Pinhole Camera Model

When we take a 2D picture, we are essentially transforming points in the real 3D world to points on a
2D image. Let’s see if we can work out what this transformation is, which we call the intrinsic camera
matrix. To do so, we model our camera as a standard pinhole model camera, in which light rays from
the real world are projected onto an image plane and there is no lens involved.

Figure 2: A pinhole camera projects a 3D object into a 2D image.

Let’s look at Fig. 2 to derive our matrix. We have two frames of reference here. One is the camera
frame with axes Xcam, Ycam, Zcam from which 3D locations can be expressed. For example, point p
has position (X,Y, Z).

We have another 2D frame of reference in the image plane with axes Xi, Yi. The point p projected
onto the image frame has coordinates (u, v) in this image frame.

Problem 6. Write expressions for u and v as functions of the 3D position (X,Y, Z) and the focal
length f .
By similar triangles,

u =
X

Z
f

v =
Y

Z
f
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2.1 Scaling

In the real world, there may be scaling effects present that may differ for the horizontal and vertical
directions. This is as if f is scaled by a factor mx when doing projections in the x direction, and scaled
by my when doing projections in the y direction. Thus, we replace the f in the expressions for u and
v by fx := mx · f and fy := my · f respectively.

Problem 7. Update the expressions for u and v using fx and fy instead of f .

u =
X

Z
fx

v =
Y

Z
fy

2.2 Translation of origin

In computer vision, the origin of a 2D image may not actually lie on the principal point. Thus, let’s
allow the image frame with axes Xi, Yi be free to move around, such that the principal point is now
at an arbitrary coordinate (xo, yo).

Problem 8. Update the expressions for u and v to take into account this arbitrary origin shift.

u =
X

Z
fx + xo

v =
Y

Z
fy + yo

2.3 Homogeneous coordinates

We define a clever way to express 2D coordinates in the image plane with three dimensions. We do

this by appending a w to the end of the vector and dividing u and v by this w. That is,

[
u
v

]
turns

into

u′

v′

w

 where

[
u
v

]
= 1

w

[
u′

v′

]
.

Problem 9. In homogeneous coordinates where w is set to be Z, find the intrinsic camera matrix that
maps a real 3D point to a point in the image plane.u′

v′

Z

 =

fx 0 xo

0 fy yo
0 0 1


︸ ︷︷ ︸

intrinsic camera matrix

XY
Z
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