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1 Inverse kinematics

In forward kinematics, we found the expression for gst(θ) as a function of θ. Now, in inverse kinematics,
we are given a desired configuration of the tool frame gd, and we wish to find the θ for which

e
�ξ1θ1 ...e

�ξnθngst(0) = gst(θ) = gd (1)

2 Padan-Kahan subproblems

To solve the inverse kinematics problem, one technique is to distill it into the following three simpler
subproblems for which we know the solutions.

2.1 Subproblem 1: Rotation about a single axis

Let ξ be a zero-pitch twist along ω with unit magnitude, and p, q ∈ R3 be two points. Find θ such
that

e
�ξθp = q (2)

Figure 1: Subproblem 1: a) Rotate p about the axis
of ξ until it is coincident with q. b) Projection of
u and v onto the plane perpendicular to the twist
axis.

• Define u = (p− r) and v = (q− r) where r is a
point on the axis. Find an expression that relates
u and v.

• Find expressions for u� and v�, the projected u
and v on the plane perpendicular to the rotation
axis.

• Write the necessary conditions for there to be a solution.

• Find the solution for θ given that it exists.
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2.2 Subproblem 2: Rotation about two subsequent axes

Let ξ1 and ξ2 be two zero-pitch, unit magnitude twists with intersecting axes, and p, q ∈ R3 be two
points. Find θ1 and θ2 such that

e
�ξ1θ1e

�ξ2θ2p = q (3)

Figure 2: Subproblem 2: Rotate p around the axis of ξ2, then around the axis of ξ1 such that the final
location is coincident with q.

• Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?

Let r be the intersection of the two axes, and c be the intermediate point at which p is rotated about
ω2 by θ2. Define vectors u = (p− r), v = (q − r), and z = (c− r).

• Write the expression for z in terms of a transformations applied to u and v.

Similarly to Subproblem 1, it is true that

ωT
2 u = ωT

2 z (4)

ωT
1 v = ωT

1 z (5)

||u|| = ||z|| = ||v|| (6)

We can express z as a linear combination of the linearly independent vectors ω1, ω2, and ω1 × ω2:

z = αω1 + βω2 + γ(ω1 × ω2) (7)

The solutions to these coefficients α, β, and γ are found by using the expressions in Eqs. 4 to 6 (see
textbook for full details). There are either zero, one, or two real solutions to these coefficients. If a
solution exists, we have z, and hence c.

What’s left is to solve
e
�ξ2θ2p = c (8)

and
e−

�ξ1θ1q = c (9)

which requires us to solve Subproblem 1 twice.
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2.3 Subproblem 3: Rotation to a given distance

Let ξ be a zero-pitch, unit magnitude twist, p, q ∈ R3 be two points, and δ > 0. Find θ such that:

||q − e
�ξθp|| = δ (10)

Figure 3: Subproblem 3: a) Rotate p about the axis of ξ until it is a distance δ from point q. b)
Projection onto plane perpendicular to axis.

• Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?

• Write the expressions of the projected u and v onto the plane perpendicular to ω, which we call u�

and v�.

• Write an expression for the distance δ� (the projected δ onto the plane perpendicular to ω) as a
function of u� and v�.

• Find the solution for θ. Hint: use result derived in Subproblem 1 to find θ0.

3 Using PK subproblems to solve inverse kinematics

We want to simplify complete inverse kinematics problems into the three subproblems we know how
to solve. The full equation becomes more simplified when we apply the kinematics equations to special
points.

In summary, we have the following subproblems that we can use to simplify the inverse kinematics of
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a robot with revolute joints:

Subproblem 1: e
�ξθp = q rotate one point onto another

Subproblem 2: e
�ξ1θ1e

�ξ2θ2p = q rotate about two intersecting axes

Subproblem 3:
���e�ξθp− q

��� = δ move one point to a specified distance from another

Solving inverse kinematics is a game of trying to reduce the number of unknowns we need to deal with.
At each step, we will try to leverage the θi’s that we know, along with specially chosen points on the
manipulator, to reduce the problem to having one or two unknown θi’s, at which point we can use one
of our subproblems to solve for the remaining variables. Let’s look at some of the tricks we can use to
reduce the number of unknowns we are dealing with.

3.1 Tricks for solving inverse kinematics using PK subproblems

Recall our problem set up. We are given a desired end effector configuration gd ∈ SE(3), and we need
to find (θ1, ..., θn) such that

eξ̂1θ1 · · · eξ̂nθngst(0) = gd

It will simplify matters if, whenever possible, we keep all the known matrices on the right hand side
and all the unknown matrices on left hand side. So to begin with, we will re-write the above problem
to leave only the product of exponentials on the left hand side

eξ̂1θ1 · · · eξ̂nθn = gdg
−1
st (0) := g

where we have simply defined g to be the known matrix gdg
−1
st (0) to simplify notation. As we shall see,

by picking certain points on our twist axes cleverly, we can eliminate variables from this product of
exponentials. We have two primary tricks for this. The first trick will allow us to eliminate exponentials

from the right hand side of the expression eξ̂1θ1 · · · eξ̂nθn and the second trick will allow us to eliminate
exponentials from the left and side of that expression.

3.1.1 Trick 1: Apply equations to a point on the axes

If we have a revolute twist ξ and we have a point p on the twist axis, applying the transformation on
that point does nothing to it, ie:

e
�ξθp = p (11)

For example, if our IK problem is

e
�ξ1θ1e

�ξ2θ2e
�ξ3θ3 = g (12)

then choosing a point p on the axis of ξ3 and multiplying both sides of (12) with p yields

e
�ξ1θ1e

�ξ2θ2e
�ξ3θ3p = gp

=⇒ e
�ξ1θ1e

�ξ2θ2
�
e
�ξ3θ3p

�
= gp

=⇒ e
�ξ1θ1e

�ξ2θ2p = gp

and this is simply Subproblem 2. In this way, we have managed to eliminate eξ̂3 from our equation,
allowing us to solve for θ1 and θ2 using subproblem 2. Once we know θ1 and θ2, now the matrices

eξ̂1θ1 and eξ̂2θ2 are both known, and we can return to finding the rest of the θi’s.
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3.1.2 Trick 2: Subtract a point from both sides and take the norm

Remember that rigid motions preserve norm. For example, say we wish to solve the same IK problem
as in Eq. 12. If the axes of ξ1 and ξ2 intersect at a point q, we can select a point p that is not on the
axis of ξ3 and simplify to the following:

δ := ||gp− q|| = ||e �ξ1θ1e
�ξ2θ2e

�ξ3θ3p− q||
= ||e �ξ1θ1e

�ξ2θ2(e
�ξ3θ3p− q)||

= ||e �ξ3θ3p− q||

(13)

which is just Subproblem 3. In this way, we have eliminated the exponentials e
�ξ1θ1 , e

�ξ2θ2 from the left

hand side of the product of exponentials. Once we solve for θ3, the matrix eξ̂3θ3 will be known and we
can return to finding the rest of the θi’s.

3.1.3 Trick 3: Dealing with prismatic joints

The 3 PK subproblems are all only relevant when dealing with revolute joints, as they all describe
scenarios where points are being rotated about axes. So in general, we will not use any predefined
subproblems when dealing with prismatic joints. Rather, we will exploit the structure of the specific
manipulator.

Note: It is usually a good idea to try solving the prismatic joints first.

Often, prismatic joints directly control the distance between some two points p and q. This happens
when the vector p − q is parallel to the axis of the prismatic joint. When this is the case, we should
try to reduce the IK problem to the form

���eξ̂θp− q
��� = δ

where ξ is the unit twist corresponding to the prismatic joint. This can usually be done with a
combination of trick 1 (for picking p) and trick 2 (for picking q). In this case, θ is exactly the distance
by which p gets moved, which allows us to find θ as simply the difference between δ and the starting
distance ||p− q||, taking care of the sign when necessary.

In other instances, such as the SCARA example from later in this discussion worksheet, the prismatic
joint directly controls one of the coordinates of the end effector. There again, it is easy to compute θ
by inspection by considering that coordinate of the desired configuration.
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4 Elbow manipulator example

Break down the inverse kinematics for the elbow manipulator in Fig. 4 into simpler PK subproblems.

Figure 4: Elbow manipulator.
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5 SCARA manipulator example

Break down the the inverse kinematics for the SCARA manipulator in Fig. 5 into simpler PK sub-
problems.

Figure 5: SCARA manipulator.
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