
EE106A Discussion 10: Control

1 Control

Now that we’ve learned how to represent the dynamics of systems we can construct controllers to
make these systems follow joint angle trajectories. First we’ll examine the PID controller, a model-free
controller that is ubiquitous in industry and often used in research. We’ll then examine how we can
use the model information in our dynamics to augment this controller.

1.1 What is control?

Say that we have some dynamic system (differential equation)

ẋ = f(x) + g(x)u

The derivative of your system state ẋ is some affine function of your system state x and a control input
u. This control input could be a velocity (like you saw in lab 7 or lab 4), a torque (like you saw in
class), a steering wheel angle, or essentially anything else. You can model traffic patterns as control
systems with your traffic lights as inputs, or the economy as a control system with interest rates as
inputs. The goal of control is to find some policy to set u such that the state x tracks some desired
reference input xd. Generally this policy will use the system’s current state to determine u. This is
called feedback.

u = K(x)

While controls can be used on a wide variety of systems, the rest of this document will assume that
we’re controlling a mechanical system and that our input is a vector of forces and/or torques. Thus
the systems we’ll be controlling will look like this:

ẍ = f(x, ẋ) +M−1u

2 PID Control

While much of control theory is focused on finding a feedback policy that will provably track desired
trajectories, meet certain robustness criteria, or will result in behavior that optimizes some value
function, PID control is an intuitive model-free method meant to be used when you don’t have a good
model of your system. It’s relatively easy to tune and can be quite robust, but unless you have a system
model, you can’t prove anything about it. If you want to track a desired trajectory [xd(t), ẋd(t)], your
control input should be

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t)

Where the state error is defined as e(t) = xd(t) − x(t) and the velocity error is defined as ė(t) =
ẋd(t) − ẋ(t). These error terms encode how far away the system state is from the desired trajectory
at any given time. Kp, Ki, and Kd are called your control gains and are each n× n diagonal matrices

1



of weights. By varying these gains, you can change how the controller responds to the various error
terms. This is called tuning the controller.

The PID controller has three parts: a proportional term Kp, which sets u proportionally to the state
error; an integral term Ki, which sets u proportionally to an integral of the state error from the start
of the trajectory to the current time; and a derivative term Kd, which sets u proportionally to the
velocity error (the derivative of the state error). All three terms need not be included. P, PI, PD, and
PID controllers are all quite common.

2.1 The Proportional Term

The proportional term is the workhorse term in any PID controller. Essentially what the P term does
is create a virtual spring force (with stiffness Kp) which pulls the state towards the desired trajectory.

Problem 1: You want to control the simple system of a mass on a frictionless rail. Your dynamics
are mẍ = u. Assume that xd(t) and ẋd(t) are uniformly zero. Your system starts at x(0) = 1. Sketch
the system response given a proportional controller u = Kpe where Kp = 1

It’ll oscillate back and forth forever:

In general increasing the proportional term will increase the amount of oscillation in the system
response as well as increasing the percent overshoot, the amount by which the system response will
exceed the setpoint in a step response. However, increasing the proportional gain will also increase
the response speed.

2.2 The Derivative Term

The derivative term is the stabilizing term in a PID controller. Essentially what the D term does is add
a damper (with viscosity Kd) between the state and its desired trajectory. A damper you see almost

2



every day are the one-way dampers mounted to the tops of doors which stop them from closing too
fast. Remember that the dynamics of a damper are F = −bẋ, so the damper exerts higher force the
faster the state is changing. Similarly the derivative term in a PID controller will exert more control
input the faster the error changes (in the direction opposite the change).
The derivative term provides stabilization, decreasing oscillation and overshoot, but will also slow
down the system response.

2.2.1 Implementation Pitfalls: Noise

The derivative term has a major implementation-related pitfall. Often, a system’s sensors will only
measure the position of the system x, not its velocity ẋ. This means that in order to estimate ẋ you

need to approximate the derivative ẋ(t) ≈ x(t)−x(t−δt)
δt . If you’ve taken EECS 16B, you’ll recognize

this difference equation as a high-pass filter. A high-pass filter amplifies high frequency components of
an input signal; the faster the input changes the higher the output will be.
The problem emerges when you consider sensor noise. Sensor noise tends to be rather low in magnitude,
but high in frequency. A common frequency for noise is 60 Hz (the frequency of AC current in the US),
but the resonant frequencies of any RLC circuits or mechanical components you’re using are also quite
common. A derivative term will naturally amplify any sensor noise and potentially cause instability in
your controller. Thus, you generally want to apply a low-pass filter such as a moving average on your
error derivative before feeding it into your derivative term. For example, the PID controller in lab 7
averages the past three measurments of ė before feeding it into the controller. The low pass filter will
attenuate the high frequency signals such as sensor noise and give you a cleaner control signal.

2.3 The Integral Term

The integral term doesn’t have as clear an effect as the proportional and derivative terms, nor does it
have a neat physical analog. In order to appreciate the effect of the integral term, we need to consider
the effect of disturbance forces on the system.

Problem 2: Imagine you want to control the same mass-rail system as you did in Problem 1. However,
now the rail has friction, and is oriented vertically, so you’ll have to deal with gravity. Your dynamics
are now mẍ + g + ẋ = u. Assume that xd(t) and ẋd(t) are uniformly zero. Your system starts at
x(0) = 1. Approximately sketch the system response given a proportional controller u = Kpe where
Kp = 100. Where does the system stabilize as t→∞.

It’ll converge, but it won’t end up converging to the desired setpoint. Instead, it’ll be slightly offset.

3



When there are constant disturbance or drift forces, it’s impossible for a PD controller to settle at
x(t→∞) = xd(t→∞). This is where the integral term is useful. By adding up error over time, the
integrator can chip away at this constant disturbance and cause the state to converge to the desired
trajectory. However, in doing so integral controllers tend to decrease system stability (even proving
stability for a system with integrators becomes much harder). If tuned improperly, they can easily
cause significant oscillation.

2.3.1 Implementation Pitfalls: Windup

Integral control also has a major implementation pitfall, which is called windup. Imagine that you’re
controlling the same mass-rail system as before, but now you have actuation constraints. Real-world
actuators usually can’t produce arbitrary torques or velocities at any given time. There are often
constraints on the maximum velocity, acceleration, and jerk of a given actuator. If you start with a
very high error, your proportional term will likely saturate your actuators, and you’ll end up taking
a longer time to reach the goal state. During this time, the integral term will keep increasing, even
though this increase won’t change u. When it finally hits the goal state the integral term will be very
large, and the system will overshoot until the integral winds down again. Then on the way back the
integrator will wind up again, this time in the opposite direction, and you’ll get overshoot again. If
the wind up gets bad enough, the integrator can easily destabilize the system, overshooting the goal
more and more each time.

Problem 3: Brainstorm some potential anti-windup methods. What are their drawbacks?
Some possible solutions:

• Time-discount your integrals (what we did in lab)

• Fixed integration horizon

• Limit the size of the integral

4



• Figure out if you’re saturating your input, and don’t change your integral term in the direction
of saturation if you are.

All of these methods have benefits and shortcomings, and picking a method that works is just another
thing you have to tune.

3 Model-Based Control

All the control we’ve done thus far has been model-free. However, we often have some idea of the
dynamics of our system, even if it’s only approximate. If we incorporate this information into our
controller, we can usually get significant benefits without many drawbacks. Furthermore, we can often
precalculate expected inputs when we calculate our state trajectories. We can easily incorporate this
information into our controller. This is called feed-forward control.

3.1 Feedforward Control

Imagine that we have a second order (force-controlled) system that we want to move from point A to B.
We can generate a trajectory xd(t) that will navigate the system from A to B. Since this is a function
of time, we can take the derivative to find ẋd(t) and do so again to find ẍd(t) (we could also use Euler
differentiation to approximate the derivative of a set of waypoints). If we have a good estimate of the
system’s inertia m(x), we can plug in the trajectory to find m(t), then find Fd(t) = m(t)ẍd(t). Now
we have an estimate of the input force required at every time step, assuming that we start where the
plan starts, and no disturbances occur. We can incorporate this information into our PID control law
by adding a feedforward term

u(t) = uff(t)Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t)

In this example uff(t) = Fd(t). Feedforward control doesn’t oscillate and can’t cause instability
(assuming that the system itself is stable). Because of this, we want the feedforward term to do a
majority of the control work, and use our feedback terms for small corrections. A good feedforward
term will drastically improve performance and require significantly less tuning, with essentially no
downsides.

3.2 Feedback Linearization

Sometimes, we can do better than plain feedforward control when we’re dealing with highly nonlinear
systems, like robot manipulators. If you look at a general control-affine (the dynamics have an affine
dependence on the control) nonlinear system

ẋ = f(x) + g(x)u

you have two nonlinear terms. The drift vector f(x) incorporates all the internal forces in the system
(coriolis and gravitational forces for example) while the control vectors g(x) determine how your control
inputs affects your dynamics. If we can figure out a set of inverse dynamics

u = a(x) + b(x)ẋd = −g−1(x)f(x) + g−1(x)ẋd

we can use this as our controller and exactly cancel out the nonlinearities of our system to get

ẋ = ẋd

It’s not always possible to invert the dynamics like this (if you want to figure out if it’s possible, you’ll
need to take a graduate nonlinear controls class), but it so happens that the dynamics of any open-
chain robot manipulator are invertible. You’ll examine the feedback linearization of these systems in
your homework, and should you choose to take EECS C106B, you’ll be implementing it on hardware.

5


